受領No. 1572

擬ハロゲン化物機能性誘導体を用いた高効率・安定な Sn ペロブスカイト太陽電池の開発

代表研究者 カダカ ビ ドゥラバ (物質・材料研究機構 主任研究員) 共同研究者 只野 央将 (物質・材料研究機構磁性・スピントロニクス材料研究セン ター 主任研究員)

Development of High Efficiency and Stable Sn-perovskite Solar Cells Using Pseudohalide Functional Derivatives

Representative Dr. DHRUBA B. KHADKA (Senior Researcher, National Institute for Materials Science (NIMS)) Collaborator Dr. Terumasa Tadano (Principal Researcher, National Institute for Materials Science, Magnetic and Spintronic Materials Research Center)

研究概要

Lead perovskite solar cells (Pb-PSCs) have demonstrated rapid progress in the power conversion efficiency of ~26.1%, as competitive to the prevailed Si-based solar cells. This material, APbX₃, is composed of A-site cation, Pb, and X-halogen. The toxicity concern of Pb in Pb-PSCs has imposed barriers to its commercialization application.

To address the toxicity issue, there have been several attempts to replace Pb with non-toxic constituents such as Sn or Bi. Among other candidates, Sn-perovskites (Sn-HP) is the most promising candidate, a close cousin of Pb-halide perovskite. However, this class of material suffers from the facile oxidation of Sn and deteriorates the optoelectronic properties. It is a big challenge to control the oxidation of divalent cations (especially; Sn, Ge-based HP film) and film growth dynamics.

To overcome the issues with Sn-PSC, it is important to modulate the Sn-perovskite material properties and its crystal growth by materials engineering. Here, we propose replacing part of the A and X-site by introducing the polyatomic pseudohalide (X_{PH}) functional derivatives. The alloying at the A and X sites in FASnI₃ perovskite with AX_{PH} strengthens the chemical interaction between A-Sn and X-Sn and effectively controls the facile oxidation. We combine the theoretical calculation-guided screening of polyatomic pseudohalide functional derivatives. The objectives of this proposal are (a) optimization of Pb-free (Sn-halide) perovskite film quality using pseudohalide additive, (b) enhancement of device performance and stability, and (c) exploration of device Physics.